p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.434C23, C23.648C24, C22.4212+ 1+4, (C2×D4).18Q8, C23.39(C2×Q8), C2.55(D4⋊3Q8), C23.Q8⋊78C2, C23.4Q8⋊59C2, (C2×C42).689C22, (C23×C4).160C22, (C22×C4).206C23, C23.7Q8⋊104C2, C23.8Q8⋊125C2, C2.16(C23⋊2Q8), C22.153(C22×Q8), C23.23D4.65C2, (C22×D4).265C22, C24.3C22.69C2, C23.63C23⋊164C2, C23.81C23⋊111C2, C2.25(C22.54C24), C2.C42.352C22, C2.100(C22.45C24), C2.52(C22.34C24), (C2×C4).77(C2×Q8), (C2×C4).449(C4○D4), (C2×C4⋊C4).459C22, C22.509(C2×C4○D4), (C2×C22⋊C4).304C22, SmallGroup(128,1480)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.434C23
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=abc, e2=ba=ab, g2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >
Subgroups: 484 in 232 conjugacy classes, 96 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.7Q8, C23.8Q8, C23.23D4, C23.63C23, C24.3C22, C23.Q8, C23.81C23, C23.4Q8, C24.434C23
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, C22.34C24, C23⋊2Q8, C22.45C24, D4⋊3Q8, C22.54C24, C24.434C23
(1 60)(2 57)(3 58)(4 59)(5 28)(6 25)(7 26)(8 27)(9 47)(10 48)(11 45)(12 46)(13 51)(14 52)(15 49)(16 50)(17 42)(18 43)(19 44)(20 41)(21 39)(22 40)(23 37)(24 38)(29 36)(30 33)(31 34)(32 35)(53 61)(54 62)(55 63)(56 64)
(1 28)(2 25)(3 26)(4 27)(5 60)(6 57)(7 58)(8 59)(9 18)(10 19)(11 20)(12 17)(13 24)(14 21)(15 22)(16 23)(29 54)(30 55)(31 56)(32 53)(33 63)(34 64)(35 61)(36 62)(37 50)(38 51)(39 52)(40 49)(41 45)(42 46)(43 47)(44 48)
(1 7)(2 8)(3 5)(4 6)(9 41)(10 42)(11 43)(12 44)(13 40)(14 37)(15 38)(16 39)(17 48)(18 45)(19 46)(20 47)(21 50)(22 51)(23 52)(24 49)(25 59)(26 60)(27 57)(28 58)(29 64)(30 61)(31 62)(32 63)(33 53)(34 54)(35 55)(36 56)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 42 5 12)(2 18 6 47)(3 44 7 10)(4 20 8 45)(9 57 43 25)(11 59 41 27)(13 32 38 61)(14 36 39 54)(15 30 40 63)(16 34 37 56)(17 28 46 60)(19 26 48 58)(21 62 52 29)(22 55 49 33)(23 64 50 31)(24 53 51 35)
(1 52)(2 40)(3 50)(4 38)(5 21)(6 15)(7 23)(8 13)(9 53)(10 29)(11 55)(12 31)(14 60)(16 58)(17 56)(18 32)(19 54)(20 30)(22 57)(24 59)(25 49)(26 37)(27 51)(28 39)(33 41)(34 46)(35 43)(36 48)(42 64)(44 62)(45 63)(47 61)
(1 35 60 32)(2 54 57 62)(3 33 58 30)(4 56 59 64)(5 53 28 61)(6 36 25 29)(7 55 26 63)(8 34 27 31)(9 39 47 21)(10 15 48 49)(11 37 45 23)(12 13 46 51)(14 18 52 43)(16 20 50 41)(17 24 42 38)(19 22 44 40)
G:=sub<Sym(64)| (1,60)(2,57)(3,58)(4,59)(5,28)(6,25)(7,26)(8,27)(9,47)(10,48)(11,45)(12,46)(13,51)(14,52)(15,49)(16,50)(17,42)(18,43)(19,44)(20,41)(21,39)(22,40)(23,37)(24,38)(29,36)(30,33)(31,34)(32,35)(53,61)(54,62)(55,63)(56,64), (1,28)(2,25)(3,26)(4,27)(5,60)(6,57)(7,58)(8,59)(9,18)(10,19)(11,20)(12,17)(13,24)(14,21)(15,22)(16,23)(29,54)(30,55)(31,56)(32,53)(33,63)(34,64)(35,61)(36,62)(37,50)(38,51)(39,52)(40,49)(41,45)(42,46)(43,47)(44,48), (1,7)(2,8)(3,5)(4,6)(9,41)(10,42)(11,43)(12,44)(13,40)(14,37)(15,38)(16,39)(17,48)(18,45)(19,46)(20,47)(21,50)(22,51)(23,52)(24,49)(25,59)(26,60)(27,57)(28,58)(29,64)(30,61)(31,62)(32,63)(33,53)(34,54)(35,55)(36,56), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,5,12)(2,18,6,47)(3,44,7,10)(4,20,8,45)(9,57,43,25)(11,59,41,27)(13,32,38,61)(14,36,39,54)(15,30,40,63)(16,34,37,56)(17,28,46,60)(19,26,48,58)(21,62,52,29)(22,55,49,33)(23,64,50,31)(24,53,51,35), (1,52)(2,40)(3,50)(4,38)(5,21)(6,15)(7,23)(8,13)(9,53)(10,29)(11,55)(12,31)(14,60)(16,58)(17,56)(18,32)(19,54)(20,30)(22,57)(24,59)(25,49)(26,37)(27,51)(28,39)(33,41)(34,46)(35,43)(36,48)(42,64)(44,62)(45,63)(47,61), (1,35,60,32)(2,54,57,62)(3,33,58,30)(4,56,59,64)(5,53,28,61)(6,36,25,29)(7,55,26,63)(8,34,27,31)(9,39,47,21)(10,15,48,49)(11,37,45,23)(12,13,46,51)(14,18,52,43)(16,20,50,41)(17,24,42,38)(19,22,44,40)>;
G:=Group( (1,60)(2,57)(3,58)(4,59)(5,28)(6,25)(7,26)(8,27)(9,47)(10,48)(11,45)(12,46)(13,51)(14,52)(15,49)(16,50)(17,42)(18,43)(19,44)(20,41)(21,39)(22,40)(23,37)(24,38)(29,36)(30,33)(31,34)(32,35)(53,61)(54,62)(55,63)(56,64), (1,28)(2,25)(3,26)(4,27)(5,60)(6,57)(7,58)(8,59)(9,18)(10,19)(11,20)(12,17)(13,24)(14,21)(15,22)(16,23)(29,54)(30,55)(31,56)(32,53)(33,63)(34,64)(35,61)(36,62)(37,50)(38,51)(39,52)(40,49)(41,45)(42,46)(43,47)(44,48), (1,7)(2,8)(3,5)(4,6)(9,41)(10,42)(11,43)(12,44)(13,40)(14,37)(15,38)(16,39)(17,48)(18,45)(19,46)(20,47)(21,50)(22,51)(23,52)(24,49)(25,59)(26,60)(27,57)(28,58)(29,64)(30,61)(31,62)(32,63)(33,53)(34,54)(35,55)(36,56), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,5,12)(2,18,6,47)(3,44,7,10)(4,20,8,45)(9,57,43,25)(11,59,41,27)(13,32,38,61)(14,36,39,54)(15,30,40,63)(16,34,37,56)(17,28,46,60)(19,26,48,58)(21,62,52,29)(22,55,49,33)(23,64,50,31)(24,53,51,35), (1,52)(2,40)(3,50)(4,38)(5,21)(6,15)(7,23)(8,13)(9,53)(10,29)(11,55)(12,31)(14,60)(16,58)(17,56)(18,32)(19,54)(20,30)(22,57)(24,59)(25,49)(26,37)(27,51)(28,39)(33,41)(34,46)(35,43)(36,48)(42,64)(44,62)(45,63)(47,61), (1,35,60,32)(2,54,57,62)(3,33,58,30)(4,56,59,64)(5,53,28,61)(6,36,25,29)(7,55,26,63)(8,34,27,31)(9,39,47,21)(10,15,48,49)(11,37,45,23)(12,13,46,51)(14,18,52,43)(16,20,50,41)(17,24,42,38)(19,22,44,40) );
G=PermutationGroup([[(1,60),(2,57),(3,58),(4,59),(5,28),(6,25),(7,26),(8,27),(9,47),(10,48),(11,45),(12,46),(13,51),(14,52),(15,49),(16,50),(17,42),(18,43),(19,44),(20,41),(21,39),(22,40),(23,37),(24,38),(29,36),(30,33),(31,34),(32,35),(53,61),(54,62),(55,63),(56,64)], [(1,28),(2,25),(3,26),(4,27),(5,60),(6,57),(7,58),(8,59),(9,18),(10,19),(11,20),(12,17),(13,24),(14,21),(15,22),(16,23),(29,54),(30,55),(31,56),(32,53),(33,63),(34,64),(35,61),(36,62),(37,50),(38,51),(39,52),(40,49),(41,45),(42,46),(43,47),(44,48)], [(1,7),(2,8),(3,5),(4,6),(9,41),(10,42),(11,43),(12,44),(13,40),(14,37),(15,38),(16,39),(17,48),(18,45),(19,46),(20,47),(21,50),(22,51),(23,52),(24,49),(25,59),(26,60),(27,57),(28,58),(29,64),(30,61),(31,62),(32,63),(33,53),(34,54),(35,55),(36,56)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,42,5,12),(2,18,6,47),(3,44,7,10),(4,20,8,45),(9,57,43,25),(11,59,41,27),(13,32,38,61),(14,36,39,54),(15,30,40,63),(16,34,37,56),(17,28,46,60),(19,26,48,58),(21,62,52,29),(22,55,49,33),(23,64,50,31),(24,53,51,35)], [(1,52),(2,40),(3,50),(4,38),(5,21),(6,15),(7,23),(8,13),(9,53),(10,29),(11,55),(12,31),(14,60),(16,58),(17,56),(18,32),(19,54),(20,30),(22,57),(24,59),(25,49),(26,37),(27,51),(28,39),(33,41),(34,46),(35,43),(36,48),(42,64),(44,62),(45,63),(47,61)], [(1,35,60,32),(2,54,57,62),(3,33,58,30),(4,56,59,64),(5,53,28,61),(6,36,25,29),(7,55,26,63),(8,34,27,31),(9,39,47,21),(10,15,48,49),(11,37,45,23),(12,13,46,51),(14,18,52,43),(16,20,50,41),(17,24,42,38),(19,22,44,40)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4N | 4O | ··· | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | C4○D4 | 2+ 1+4 |
kernel | C24.434C23 | C23.7Q8 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.3C22 | C23.Q8 | C23.81C23 | C23.4Q8 | C2×D4 | C2×C4 | C22 |
# reps | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 4 | 8 | 4 |
Matrix representation of C24.434C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 2 | 3 |
0 | 2 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,2,0,0,0,0,0,3],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,2,1] >;
C24.434C23 in GAP, Magma, Sage, TeX
C_2^4._{434}C_2^3
% in TeX
G:=Group("C2^4.434C2^3");
// GroupNames label
G:=SmallGroup(128,1480);
// by ID
G=gap.SmallGroup(128,1480);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,344,758,723,1571,346,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=a*b*c,e^2=b*a=a*b,g^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations